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a b s t r a c t

Forced convective heat transfer due to a non-Newtonian fluid flowing past a flat plate has been investi-
gated using a modified power-law viscosity model. This model does not contain physically unrealistic
limits; consequently, no irremovable singularities are introduced into boundary-layer formulations for
such fluids. Therefore, the boundary-layer equations can be solved by (numerically) marching down-
stream from the leading edge as is common for boundary layers involving Newtonian fluids. For shear-
thinning and shear-thickening fluids, non-Newtonian effects are illustrated via velocity and temperature
distributions, shear stresses, and heat transfer rates. The most significant effects occur near the leading
edge, gradually tailing off far downstream where the variation of shear stresses becomes smaller.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The interest in heat transfer problems involving power-law,
non-Newtonian fluids has grown in the past half century. Recently,
an excellent sequence of lectures on non-Newtonian fluids was gi-
ven by Hinch [1]. It appears that Acrivos [2], a frequently cited pa-
per, was the first to consider boundary-layer flows for such fluids.
Since then, a large numbers of relevant papers have been published
due to their importance in chemicals, foods, polymers, molten
plastics, petroleum production, and other natural phenomena. A
complete survey of this literature is impractical; however, a few
items are listed here to provide starting points for a broader liter-
ature search [2–15].

Two widespread mistakes appear continuously in papers study-
ing boundary layers of power-law, non-Newtonian fluids. The first
is that few authors recognize that a length scale is introduced by
the use of power-law correlations; consequently, boundary-layer
problems with power-law, non-Newtonian fluids cannot have sim-
ple self-similar solutions. Nevertheless, it is a common practice to
ignore, without justification, the dependence of boundary-layer
solutions on the streamwise coordinate. It has been demonstrated
in [14,15] that such a self-similar solution is only valid at the lead-
ing edge of the boundary layer. This similarity solution is a natural
upstream condition, which is needed to integrate the boundary-
layer equations in the streamwise direction from the leading edge.
The mathematical structure of the boundary layer is similar to that
of the mixed-convection boundary layer on a vertical heated plate
[16].

The second concern is related to the unrealistic physical results,
introduced by the traditional power-law correlation, that viscosity
ll rights reserved.
either vanishes or becomes infinite in the limits of large or small
shear rates, respectively. This usually occurs at the leading edge
of a flat plate, or along the outer edge of the boundary layer where
it matches with the outer inviscid flow. Thus, traditional power-
law correlations introduce non-removable singularities into
boundary-layer formulations leading to infinite or zero viscosity.
Without recognizing the cause of such unrealistic conditions, com-
plex multi-layer structures have sometimes been introduced to
overcome mathematical difficulties in order to obtain solutions
of a non-physical formulation [12,13], or a ‘‘false” starting process
has been used to integrate boundary-layer equations slightly
downstream from the leading edge to avoid the leading-edge
region.

The new modified power-law correlation is sketched in Fig. 2
for various values of the power index n. It is clear that the new cor-
relation does not contain the two physically unrealistic limits asso-
ciated with traditional power-law correlations, and fits better with
the measured viscosity data [1]. The constants in the proposed
model are fixed with available measurements and are described
in detail in [14]. The boundary-layer formulation on a flat plate is
described and numerically solved in [14], and the associated heat
transfer for two different heating conditions is reported in [15].
An oil was selected in the study of [14,15]; its power-law index
of 0.95 is only slightly different from the Newtonian value, n = 1.
In this paper, the analysis is extended to fluids whose power-law
indexes are 0.6, 0.8, 1, 1.2, and 1.4 in order to fully demonstrate
the impact of the new correlation.

It is worthy to note that the variation of viscosity for shear-
thickening cases can lead to rather large viscosities at a leading
edge; in turn, this can cause the Reynolds number to be so small
as to invalidate the boundary-layer approximation. Thus, applying
the analysis reported in this paper requires judgment. A brief dis-
cussion is provided about the flow structure near the leading edge
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Nomenclature

C constant
Cf Shear stress
D non-dimensional viscosity of the fluid
K thermal conductivity
l reference length scale of the plate
n non-Newtonian power-law index
Nu Nusselt number
Re Reynolds number
ð�u; �vÞ fluid velocities in the ð�x; �yÞ directions, respectively
(U,V) dimensionless fluid velocities in the (n,g) directions,

respectively
U0 free stream velocity
T dimensional temperature of the fluid

Tw surface temperature
T1 ambient temperature

Greek symbols
n axial direction along the plate
g pseudo-similarity variable
c shear rate
q fluid density
m viscosity of the non-Newtonian fluid
m1 reference viscosity of the fluid
a thermal diffusivity
h dimensionless fluid temperature
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of a sharp flat plate and the nature of the associated singularity in
order to elucidate the physics of flow and its removability in Sec-
tion 3.

2. Formulation of problem

A steady laminar boundary layer of a non-Newtonian fluid
along a semi-infinite heated flat plate has been studied. The viscos-
ity depends on the dominant fluid shear rate and is correlated by a
modified power-law. We consider shear-thinning and shear-thick-
ening situations of non-Newtonian fluids. It is assumed that the
surface temperature of the plate is Tw, where Tw > T1. Here T1 is
the ambient temperature of the fluid and T is the temperature of
the fluid. The coordinate system is shown in Fig. 1.

The equations governing the flow and heat transfer are

o�u
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where ð�u; �vÞ are velocity components along the ð�x; �yÞ axes, T is the
temperature, and a is the thermal diffusivity of the fluid. The viscos-
ity is correlated by a modified power-law, which is
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q
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The constants �c1 and �c2 are two threshold shear rates, q is the den-
sity of the fluid and K is a dimensional constant, whose dimension
depends on the power-law index n. The values of these constants
can be determined by matching with measurements. Outside of
y
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Fig. 1. Coordinates.
the above range, viscosity is assumed constant; its value can be
fixed with data given in Fig. 2.

The boundary conditions for the present problem are

�u ¼ �v ¼ 0; T ¼ Tw at �y ¼ 0;
�u! U0; T ! T1 as �y!1:

ð5Þ

We now introduce the following non-dimensional variables and
transform boundary-layer equations to parabolic coordinates (n,g):

n ¼ x ¼
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where m1 is the reference viscosity, h is the dimensionless tempera-
ture of the fluid, Re is the Reynolds number. The length scale asso-
ciated with the non-Newtonian power-law [14] is
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Substituting variables (6) into Eqs. (1)–(4) leads to the following
equations
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Fig. 2. Modified power-law correlation.
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where Pr is the Prandtl number,

D ¼

1; c 6 c1

c
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; c1 6j c j6 c2; and c ¼ ð2nÞ�1=2 oU
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>>>>:

ð11Þ

The boundary conditions (5) become

U ¼ V ¼ 0; h ¼ 1 at g ¼ 0;
U ! 1; h! 0 as g!1:

ð12Þ

Eqs. (8)–(10) can be solved by marching downstream with the up-
stream condition satisfying the following ordinary differential
equations by taking the limit of (8)–(10) as n ? 0. The result is

� g
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The solution of the above equation is the Blasius solution for a fluid
with constant viscosity D.

Eqs. (8)–(10) and (13)–(15) are discretized by a central-differ-
ence scheme for the diffusion term and a backward-difference a
scheme for the convection terms; finally we get a system of impli-
cit tri-diagonal algebraic system of equations. The algebraic equa-
tions have been solved by a double-sweep technique. In the
computation the continuity equation is directly solved for the nor-
mal velocity V. Hence, the truncation errors are O(Dn). The compu-
tation is started from n = 0, and then marches downstream to
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Fig. 3. Velocity distribution at (a) n = 0.0 (b) n
n = 100. After several test runs, convergent results are obtained
by using Dn = 2 � 10�9 and Dg = 0.001 near the leading edge, say
n = 0.0–10�5; afterwards Dn is gradually increased to Dn = 0.01.

In practical applications, the physical quantities of primary
interest are the skin-friction coefficient Cf and the Nusselt number
Nu, respectively; they are defined by

Cfð2nÞ1=2 ¼ D
oU
og

� �
g¼0
; ð16Þ

Nuð2nÞ�1=2 ¼ � oh
og

� �
g¼0
: ð17Þ
3. Results and discussion

Numerical results are presented for the non-Newtonian power-
law fluids of shear-thinning (n = 0.6, 0.8) and shear-thickening
(n = 1.2, 1.4) cases along with those for a Newtonian fluid
(n = 1.0). The velocity and temperature distribution appear in Figs.
3–5; the skin-friction coefficient and the Nusselt number appear in
Figs. 6–8 for large Prandtl number. The singularity experienced at
the leading edge for the traditional power-law correlation has been
successfully removed by using the modified power-law correla-
tion. Since the shear tress at the leading edge is inversely propor-
tional to

ffiffiffiffiffiffi
2n
p

, and so is infinite there, D = (c2/c1)n-1 at the leading
edge.

Fig. 3a–d show the velocity distribution as a function of g at se-
lected n locations for various values of the power-law index n.
From Fig. 3a, it is seen that for the shear-thinning fluids (n < 1),
the velocity speeds up rapidly due the reduction of viscosities near
the leading edge. Since the local Reynolds number is larger for a
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= 0.1075 (c) n = 1.0102 and (d) n = 2.0139.
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Fig. 4. Temperature distribution at (a) n = 0.0 (b) n = 0.1075 (c) n = 1.0102 and (d) n = 2.0139 while Pr = 100.
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larger n, the thickness of the boundary layer is thinner. On the
other hand, for the shear-thickening fluids (n > 1) the velocity
decelerated slowly due to the large viscous effect, and the bound-
ary layer is thicker near the leading edge. From Fig. 3b–d, we can
say that, at the downstream region the velocity distribution grad-
ually approaches the velocity distribution of the Newtonian fluid
(n = 1). This means, for the shear thinning case, the effect of the vis-
cosity increases while, for the shear-thickening case, it decreases in
the downstream region. The distribution of shear stresses gradu-
ally smooths out, and so do the viscosities.

It is worthwhile to note that the boundary-layer thickness for
n = 1.4 at n = 0 is approximate 75, but quickly drops below 10 be-
fore n = 0.1. This is because n = 1.4 is an extreme case, and the vis-
cosity at n = 0 is about 15 times larger than that for n = 1.2. As soon
as the fluid flows past the leading edge, the viscosity quickly drops,
the local Reynolds number increases, and the boundary layer be-
comes thinner.

It is clear that the variation of boundary-layer thickness is large
for non-Newtonian fluids. In particular, the Reynolds number at
the leading edge for a shear-thickening fluid can be small; imply-
ing the boundary-layer approximation may be inappropriate. To
apply the analysis reported in this paper requires a judgment to
make sure that the boundary-layer approximation is appropriate.
If the flow Reynolds number near the leading edge region is small;
the axial diffusion terms become as large as the axial convection
terms. Consequently, they cannot be ignored and no boundary-
layer structure exists near the leading edge. However, the flow
accelerates in the downstream direction, increasing the Reynolds
number so that it becomes large enough to support a boundary
layer. This is a complex problem, and has, to our knowledge, never
been studied before. We will try to explain the complex nature of
the problem below.

The flow physics of a boundary layer of a Newtonian fluid near a
sharp leading edge is much simpler than the problem discussed
above. Unfortunately, even this simpler case is still an open prob-
lem without a completely satisfactory solution. The leading-edge
problem for a further simplified case of a slug flow has an analyt-
ical solution [17], which can reveal some of the proper physics near
the leading edge and also provide an explanation of the singularity
at the leading edge. Axial diffusion terms are as important as axial
convection terms in a small leading-edge region whose size is of
O(Re�1). In this region the governing partial differential equation
is elliptic and is not parabolic. The heating effect starts a short dis-
tance O(Re�1) ahead of the leading edge. This can be seen from
many Schlieren pictures of boundary layers near a sharp leading
edge. The analysis indicates that the thickness of boundary layers
at the leading edge is O(Re�1). This tiny thickness at the leading
edge complicates analyses of boundary layers substantially. Since
its size is O(Re�1) and much smaller than the thickness of boundary
layer, which is O(Re�1/2), it is always assumed that the thickness of
boundary layers is zero at a sharp leading edge. This is the source
of the singularity associated with the leading edge of a sharp ob-
ject. Fortunately, the strength of the singularity is O(x�1/2), and
hence integrable; thus, it can be scaled out, as demonstrated above.
The acceptance of this simplification has been repeatedly verified
experimentally, and has been taken for granted since the beginning
of the boundary-layer theory. It should be noted that the size of the
small Reynolds-number region for extreme shear-thickening, non-
Newtonian fluids is not similar to the leading-edge region dis-
cussed above, and is currently unknown.



0 0.25 0.5 0.75
0

0.2

0.4

0.6

0.8

1

n=1.0
n=0.6
n=0.8
n=1.2
n=1.4

θ

η
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

n=1.0
n=0.6
n=0.8
n=1.2
n=1.4

θ

η

0 0.1 0.2 0.3 0. 4 0.5
0

0.2

0.4

0.6

0.8

1

n=1.0
n=0.6
n=0.8
n=1.2
n=1.4

θ

η
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

n=1.0
n=0.6
n=0.8
n=1.2
n=1.4

θ

η

a b

dc

Fig. 5. Temperature distribution at (a) n = 0.0 (b) n = 0.1075 (c) n = 1.0102 and (d) n = 2.0139 while Pr = 1000.
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The corresponding temperature distribution are plotted for
Pr = 100 and 1000 in Figs. 4 and 5, respectively. For both of these
Prandtl numbers, in the case of shear thinning fluids, the tempera-
ture distributions are smaller than the distribution for the shear-
thickening fluids. At the downstream region the temperature dis-
tribution increases for n < 1 and decreases for n > 1 case owing to
the opposite viscous effect for the shear thinning and shear thick-
ening fluids. Here it is notable that for Pr = 1000 the thermal
boundary layer thickness is approximately half of that for
Pr = 100. The variation of boundary-layer thickness, which is inver-
sely proportional to the square root of the local Reynolds number,
is clearly demonstrated in the plots of velocity and temperature
distributions above.
The result of the variation of the wall shear stress is expressed
in terms of the skin-friction coefficient Cf (2n)1/2 in Fig. 6. The min-
imum wall shear stress of the shear-thinning fluids (n < 1) and the
maximum wall shear stress of the shear-thickening fluids (n > 1)
occur at the leading edge of the plate. For the shear-thinning case,
the wall shear stress increases up to n � 12.5 and then gradually
decreases and asymptotically approaches the value for a Newto-
nian fluid (n = 1). Similarly, for a shear-thickening fluid, the wall
shear stress decreases up to n � 10 and then asymptotically ap-
proaches the wall shear of Newtonian fluid. In a computation up
to n = 8000, the difference of the wall shear stress of non-Newto-
nian fluid and Newtonian fluids become extremely small, but still
not identical. This is a result of the inherent non-linearity associ-
ated with the non-Newtonian fluid.
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The rate of heat transfer in terms of the Nusselt number
Nu(2n)�1/2 are shown in Figs. 7 and 8, respectively for Pr = 1000
and 1000. For both Prandtl numbers, the maximum heat transfer
rate occurs at the leading edge for non-Newtonian shear-thinning
fluids. Specifically, for n = 0.6, the maximum values of Nu(2n)�1/2

are 5.34706 and 11.9674 for Pr = 1000 and 1000, respectively.
The minimum values of the heat transfer rate occur at the leading
edge for the shear-thickening fluids; for n = 1.4, they are 1.33526
and 2.87654 with the respective Prandtl number 100 and 1000.
After the leading edge, for n < 1 the rate of heat transfer decreases
and for n > 1 increases suddenly up to n � 12.5 and then asymptot-
ically approach the value of Nu(2n)�1/2 in the case of Newtonian
fluid. From Figs. 6–8, we can conclude that if the wall shear stress
is large, the heat transfer rate is small, and vice versa.

4. Conclusions

The proposed modified power-law correlation fits well with the
measurement of non-Newtonian fluids; consequently it does not
contain physically unrealistic limits. The problems associated with
the non-removal singularity introduced by the traditional power-
law correlations are eliminated by use of the modified power-
law correlation proposed in this paper. Therefore, it can be used
to investigate other heat transfer problems for shear thinning or
shear thickening, non-Newtonian fluids in boundary layers.
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